ZEROBASE: At the Intersection of Trusted Computing and Verifiable

Privacy

I. INTRODUCTION

In recent years, as data sovereignty, privacy protection, and
system transparency have become central themes in global
policy and industry discourse, the demand for a technical
foundation that enables “controllable yet non-intrusive” infras-
tructure has become a critical challenge for the architectures
of digital finance and the sharing economy. In traditional
paradigms, on-chain execution provides verifiability but suffers
from performance bottlenecks and limited privacy guarantees,
making it ill-suited for high-frequency trading, complex strate-
gies, and sensitive data processing. Off-chain systems, while
more efficient, sacrifice verifiability and trustlessness, resulting
in increased trust costs and structural risks for users.

ZEROBASE proposes a hybrid paradigm that integrates
off-chain Trusted Execution Environments (TEEs) with on-
chain Zero-Knowledge Proofs (ZKPs), achieving both privacy
in execution and verifiability in outcomes—without reliance
on centralized intermediaries [1]-[3]. This architecture lever-
ages three foundational technologies—zero-knowledge proofs,
hardware-based circuit-level encryption (e.g., AMD SEV-
SNP), and programmable liquidity engines—to construct a
highly available, modular, and sustainable privacy-preserving
execution network. It provides unified, accessible, and trust-
worthy infrastructure for developers, asset providers, and end-
users alike.

Therefore, ZEROBASE is not intended as an isolated proto-
col but as a generalized execution platform capable of support-
ing complex strategy deployment, resource assetization, and
trusted off-chain computation—serving as a systemic anchor
and universal trust layer for diverse application scenarios.

A. Vision and Mission: Restructuring Trust in Financial Exe-
cution

The mission of ZEROBASE is to address two long-standing
challenges in on-chain ecosystems: (1) the inability of users
to verify complex strategies, leading to widespread “black-
box execution”; and (2) the inherent tension between privacy
preservation and system transparency, which forces users and
developers to trade off efficiency against trust.

We argue that a truly sustainable execution network must
satisfy three essential conditions: preserving confidential space
for strategists, defining clear risk boundaries for capital par-
ticipants, and minimizing integration and composability costs
for builders.

To this end, ZEROBASE aims to establish a philosophy of
structural transparency—a system built not on trust assump-
tions, but on mathematical guarantees, architectural isolation,
and standardized interfaces, thereby enabling a trustworthy
multi-party collaboration framework.

Our vision can be summarized in four core pillars:

o Verifiable Strategy Execution: Support for complex strate-
gies (e.g., hedge funds, algorithmic trading) to run pri-
vately off-chain, while exposing key risk metrics such as
leverage ratios and value-at-risk (VaR) intervals via zero-
knowledge range proofs—achieving ‘“‘auditable privacy”
without blind trust.

o Resource Assetization: Enable bandwidth, storage, GPU
cycles, and other shareable resources to participate
in DeFi mechanisms—collateralization, lending, atomic
swaps—by generating on-chain attestations through
trusted execution and ZK proofs, thereby unlocking their
on-chain liquidity potential.

o Composable User Experience: All core modules (e.g., cir-
cuits, zkStaking, ZK browser) adopt standardized, nested-
callable interfaces. Developers can easily compose and
reuse capabilities to rapidly construct composite applica-
tions with minimal friction.

o Frictionless Ecosystem Collaboration: Through well-
defined interface specifications and stable tooling, ZK
applications can interoperate without requiring additional
consensus layers, transitioning from isolated protocols to
a structurally collaborative ecosystem.

Guided by these principles, ZEROBASE is committed to
building a decentralized execution ecosystem that is struc-
turally sound, clearly bounded, and collaboration-efficient—a
platform that demands neither trust concessions nor privacy
sacrifices.

B. Technical Philosophy and Design Principles: Reconstruct-
ing Trust Boundaries between Mathematics and Hardware

ZEROBASE is not merely an incremental upgrade to ex-
isting paradigms—it represents a foundational reconfigura-
tion of the trust model itself. It is a systemic logic that
unites mathematical formalism, cryptographic mechanisms,
and trusted hardware into a cohesive operational frame-
work—where “trustlessness” becomes the default assumption.

This structurally transparent execution network is governed
by three core design principles:

¢ Minimal Disclosure. Information is no longer disclosed
as “raw data,” but as cryptographic “proofs.” Whether
representing strategy risk, yield performance, or liquidity
status, ZEROBASE employs range proofs or structured
ZKPs to express system states, ensuring that users can
establish trust without accessing underlying data. For
example, statements like “leverage does not exceed 2x” or
“daily yield falls between 0.1% and 0.3%” are presented
as verifiable outputs, rather than plaintext disclosures.

o Trust Minimization. Off-chain execution in ZEROBASE
operates within AMD SEV-SNP’s confidential comput-
ing environment, with remote attestation verifying the
integrity of the runtime. On-chain verification is per-
formed via formally constructed ZK circuits. As a result,
the system eliminates dependence on any single trusted
party and ensures logical correctness through crypto-
graphic primitives and architectural compartmentaliza-
tion—achieving end-to-end structural trustlessness from
hardware root-of-trust to governance mechanisms.

o Composable Proofs. In the ZEROBASE architecture,
proofs function as the “intermediate language” for inter-
module cooperation. Each strategy module outputs a uni-
fied state digest (e.g., risk intervals, performance metrics,
solvency indicators [4]) that can be directly consumed
by DeFi protocols, liquidation engines, or collateral-
ized lending structures. This abstraction—“proof as in-
terface”—dramatically reduces verification costs, clearly
defines module boundaries, and fosters innovation across
chains and execution domains.

ZEROBASE thus embraces a novel ethical framework: privacy
is usable, trust is computable, and structure is composable. A
truly trustworthy system requires no justification—it proves
itself through its own architecture.

C. Market Landscape and Core Challenges: Fragmented Pri-
vacy Solutions and Absent Systemic Coordination

Amidst rapid advances in cryptographic finance, distributed
computing, and modular protocols, the greatest challenge
today is not the absence of technological tools—but the lack of
an integrated architecture that harmonizes them. Users demand
privacy, capital demands verifiability, systems rely on off-chain
execution, and resources seek on-chain monetization—yet
existing architectures typically satisfy only one of these needs,
often at the expense of the others.

This has led to several structural dilemmas:

o Users require privacy, yet protocol design mandates data

transparency;

« Strategies need secrecy to preserve alpha, yet participants
demand clear exposure metrics;

« System performance depends on off-chain execution, but
verification logic is constrained by on-chain infrastruc-
ture;

o Resources are shareable but not composable, making
“off-chain value” difficult to tokenize.

These tensions highlight the absence of structural coordina-
tion as a systemic bottleneck. From opaque operations on
centralized platforms to the indiscriminate public exposure
of on-chain data; from fragmented mining yield structures to
inconsistent privacy standards—the broader crypto ecosystem
lacks a unified hub that integrates execution, verification, and
incentive mechanisms.

The Trust-Minimized Execution Network (TMEN) proposed
by ZEROBASE is not tailored to a specific application. Rather,
it is a foundational capability layer designed to make off-chain
execution verifiable on-chain, to interconnect ZKP and TEE
systems, and to unify resources and strategies in a composable

structure. Its core value lies not in expanding application
coverage, but in offering:

o A reusable bridge between off-chain and on-chain envi-
ronments;

e An interface architecture that accommodates diverse
proof systems and hardware models;

o A modular framework that abstracts assets, strategies, and
resources into standardized I/0O formats;

o A unified platform that synchronizes execution, verifica-
tion, and incentive flows.

Built atop this interface layer, developers can freely build
complex interactions, users can engage with confidence, re-
source providers can monetize participation, and the system
as a whole gains evolutionary resilience through architectural
alignment.

II. SYSTEM ARCHITECTURE

ZEROBASE seeks to construct a trust-minimized and
privacy-verifiable execution network that serves as a structural
bridge of trust for off-chain computation, addressing the pre-
vailing reliability gap between on-chain and off-chain systems.
This network is built upon the coordinated operation of three
core technological components:

e Trusted Execution Environments (TEE) for off-chain
privacy-preserving and integrity-guaranteed computation;

e Zero-Knowledge Proofs (ZKP) on-chain to enable result
verifiability without revealing sensitive data;

o A unified proof mediation layer (Proof Mesh) for cross-
layer and cross-protocol standardization and interoper-
ability.

This tripartite architecture not only ensures trust and pri-
vacy for off-chain computation, but also supports strategy
abstraction, modular composition, and verifiable state transi-
tions—forming a scalable foundation for decentralized finance
(DeFi), shared computing, and Al computation.

A. Three-Layer Architectural Design: TEE, ZKP, and Proof
Mesh

The ZEROBASE execution network is organized into three
architectural layers, each fulfilling distinct functional respon-
sibilities and interfacing through standardized protocols. This
layered design enhances system modularity, maintainability,
and extensibility.

1) Trusted Execution Layer (TEE Layer): At the core of
the execution network lies the TEE Layer, responsible for all
sensitive off-chain computations, including strategy execution,
resource scheduling, and data processing. Each strategy en-
gine, transaction node, or resource provider operates within
a hardware-isolated trusted execution environment, such as
AMD SEV-SNP, Intel TDX, or ARM CCA [5]-[7]. TEE tech-
nologies enforce memory encryption and CPU-level access
control to isolate the runtime environment and protect against
external inspection or tampering.

To prevent malicious nodes from impersonating trusted
computing agents, the system employs Remote Attestation
mechanisms [5]-[7]. Each node must submit hardware-signed

Hub

| Worker

Fig. 1: Network Architecture

attestations during registration or execution, proving the au-
thenticity, integrity, and consistency of its execution environ-
ment. These attestations form the basis for a decentralized
reputation model that balances openness with security across
the ZEROBASE network.

Logic executed within the TEE is subject to rigorous audit
and encapsulation, functioning externally as a “black box.” It
accepts encrypted inputs from on-chain or off-chain sources,
performs private computations internally, and produces both
a final output and a proof digest for on-chain verification.
Throughout this process, user data, strategy logic, and resource
access patterns remain encrypted—ensuring full execution
privacy.

2) Zero-Knowledge Proof Layer (ZKP Layer): Following
execution within the TEE, results must be verifiably con-
veyed to on-chain validators. This task is handled by the
ZKP Layer, which transforms key execution semantics into
cryptographic zero-knowledge proofs. Serving as the system’s
“trust extension mechanism,” the ZKP Layer enables each
node to use standardized circuit templates to convert inputs,
state transitions, and outputs into verifiable zk-SNARK or
zk-STARK proofs [1], [8]-[11]. To promote generalizability
and developer efficiency, ZEROBASE offers a standardized
circuit library encompassing multiple commonly-used proof
types [12], [13], including:

o Range Proofs: Verifying that a numerical value lies within

a specified interval [12];

o Validity Proofs: Confirming that a computation was per-

formed on valid inputs and states;

« State Transition Proofs: Verifying that a state change from

so to s; adheres to predefined logical constraints;

o Merkle Path Proofs: Proving inclusion of a specific ele-

ment in an off-chain Merkle-based state tree.
The current implementation integrates major proof systems
such as PLONK, Grothl6, and STARKs to optimize for
low verification cost and compact proof sizes. For long-term
resilience against quantum threats, ZEROBASE also envisions
incorporating lattice-based zero-knowledge systems, including
constructions based on LWE and SIS [14], [15], to combine

cryptographic hardness with programmability and structural
flexibility.

3) Proof Mediation Layer (Proof Mesh Layer): The Proof
Mesh serves as the structural adaptor between TEE-based oft-
chain execution and on-chain integration, representing one
of ZEROBASE’s most novel architectural components. It
performs several critical roles that enable high-efficiency, high-
generalizability, and high-composability coordination across
layers.

First, the Proof Mesh standardizes all ZKPs produced by
the TEE Layer. This involves formatting (e.g., unified field
names and proof structures), semantic annotations (e.g., proof
type, purpose, timestamp), and protocol version control. These
standards allow on-chain smart contracts to interface with off-
chain proofs via uniform APIs without needing to interpret
implementation-specific logic—significantly lowering integra-
tion overhead.

Second, the Proof Mesh enables advanced proof-level func-
tionalities, such as:

e Proof Aggregation. Compressing multiple independent
proofs into a single proof to reduce on-chain verification
overhead [9], [12], [16];

o Recursive Proofs: Embedding one proof within another,
allowing hierarchical modeling of complex off-chain pro-
cesses [9], [10], [30];

o Cross-Protocol Invocation: Facilitating the reuse and in-
vocation of proofs across different modules and DApps,
forming a “’proof-as-a-service” data layer [17]-[19].

In addition, the Proof Mesh introduces version control and
event subscription mechanisms, enabling support for “off-
chain computation logs” and “on-chain event triggers.” For
example, a DApp can subscribe to the publication of specific
types of execution proofs and trigger automated logic in
response to newly generated proofs.

Through the coordinated operation of these three
architectural layers—secure execution (TEE), verifiable
translation (ZKP), and interoperable mediation (Proof
Mesh)—ZEROBASE establishes a complete trust-preserving
execution loop. Each off-chain computation is encapsulated
into a standardized, succinct, and verifiable “proof package,”
ready for dissemination and invocation on-chain.

This design embodies a new execution paradigm where
“results become interfaces, and proofs define structure,”
transforming off-chain execution from a black-box process
into a first-class citizen within the on-chain economic sys-
tem—composable, callable, and trust-minimized by construc-
tion.

III. NETWORK TOPOLOGY AND NODE MANAGEMENT

To achieve both scalability and resilience against adversar-
ial behavior, the ZEROBASE network adopts a hierarchical
routing architecture, whereby Worker nodes are organized into
subnets managed by Hub nodes. Each Hub is responsible for
a subset of Worker nodes, and the routing structure is built
on a Kademlia-like topology, where node identifiers (Node
IDs) are derived by hashing the node’s IP address and port
number using SHA-1 (160-bit), which also serves as the basis

Fig. 2: Node Distance

for logical distance calculation and routing table construction
[20].

A. Node Identification and Logical Distance Metrics

Every node in the network—whether a Hub or a
Worker—generates a unique 160-bit Node ID upon joining
the system by hashing its IP address and port number:

ID = SHAI1(IP, Port)

The logical distance between any two nodes is defined as
the bitwise XOR of their Node IDs. For instance, given two
nodes with IDs: X = 1101, Y = 1000.This XOR-based metric
does not reflect physical proximity but is used solely for
constructing logical routing paths. When a Worker joins the
network, it computes its logical distance to all existing Hubs
and binds to the nearest Hub, which is then responsible for
maintaining and managing its state.

B. Node Assignment and Distance-Based Layering

Consider a network with three Hub nodes: Hubg, Hubq,
and Hubs, with corresponding Node IDs X, Y, and Z. A
new Worker node with ID T joins the network. The Worker
computes its XOR distance to each Hub:

DT, X)=T®X DT, Y)=TRY DT,2)=T®Z
Suppose

X =0001 Y =0010 Z=0100 7T = 1000
Then

T®X=1001 T®Y =1010 T® Z = 1100

Since the node ID is a 160-bit binary string, each Hub needs to
maintain 160 lists (K-buckets) to store other Hub information,
such as IP, port, and ID.

Consider the following scenario: Hub1’s ID is 101. If the
first digits of Hub2’s ID are the same as Hub1’s ID, and only
the last digit is different, that is, 100, the XOR of the two Hub
IDs is 101 6 100 = 001, that is, the distance is 1; for Hub2,
Hubl will put it into "K-Bucket 1.

Consider the IDs of some Hubs, where all the first digits
are the same and the second-to-last digits are different. There
are two such Hubs, whose IDs are 111 and 110, respectively.
The XOR values of these Hubs with the ID of Hubl are 101&®
111 = 010 and 101 & 110 = 011, that is, the distance ranges
are 2 and 3. For these two Hubs, Hubl will put them into
”K-Bucket 2”.

Hub

Workerd [T
Worker) —-

~

Workerl

Worker

NS4

Fig. 3: Node Assign

Consider the IDs of some Hubs, where all the first digits are
the same and the third digit from the last is different. There
are only four such Hubs, and their IDs are: 000, 001, 010,
011, and the XOR values of these Hubs with the ID of Hubl
are 101 @ 000 = 101, 101 ¢ 001 = 100, 101 & 010 = 111,
101011 = 110, that is, the distance ranges are 4, 5, 6, and 7;
Hub1 will put these four Hubs into ”K-Bucket 3”. As shown
in the figure below, for Hub with ID 101, it adds Hub with
ID 0 x x to "K-Bucket 3”, Hub with ID 11x to "K-Bucket
27, and Hub with ID 101 to ”K-Bucket 1”.

If the first digits of a Hub’s ID are the same, but the digits
from the last digit are different, there are only 2°~! such Hubs,
and their distances from Hubl are in the range of [2¢~1, 2/ —1].
For Hubl1, these Hubs will be placed in "K-Bucket i”.

TABLE I: Bucket

K-Bucket Distance Interval
K-Bucket 1 [20,21 —1]
K-Bucket 2 (21,22 — 1]
K-Bucket 3 (22,23 —1]

K-Bucket 160 | [21%9 2160 _ 1]

As i increases, there are 2! Hub information in K-
Bucket i, which will bring great storage overhead to the Hub.
Therefore, it is stipulated that each K-Bucket only records
the information of K Hubs, where K is an adjustable constant
parameter. Since the ID length is 160 bits, each Hub maintains
information of up to 160 x K (K is usually 20) other Hubs.
In addition, the position of the Hubs stored in each K-bucket
is arranged in the order of the last time they were seen, with
the earliest accessed at the head and the latest accessed at the
tail.

C. Instruction Set for Hub Nodes

Communication between Hub nodes is facilitated through a
concise set of protocol-level commands. The core instruction
set includes:

o PING: Used to probe the liveness of a target Hub node.
Essential for maintaining the health of K-Buckets.

Bucket 0 NULL Distance : [2°,2")
Bucket 1 NULL

H First In First Out

Fig. 4: K-Bucket

Distance : [2*,2%)

Distance : [27,2%)

Bucket 159 Distance : [2'%,216%)

+« ADD_WORKER: Instructs the recipient Hub to store state
and routing information for a specified Worker node.

o FIND HUB: Requests the target Hub to return detailed
routing information (IP, Port, Node ID) for the K Hubs
closest (in logical distance) to a specified target ID. If
the optimal K-Bucket does not contain enough entries,
results are merged from multiple buckets until K entries
are obtained. If fewer than K are known, all available
entries are returned.

o FIND WORKER: Similar in operation to FIND_HUB,
but targets a specific Worker node, returning its unique
identity information.

D. Routing Table Maintenance: K-Bucket Update Mechanism

ZEROBASE employs a Kademlia-inspired mechanism for
maintaining the integrity and freshness of routing tables. Each
Hub maintains 160 K-Buckets, each corresponding to a distinct
range of logical distances. The system supports three primary
modes of updating K-Buckets:

e Active Hub Discovery: A Hub proactively issues
FIND HUB requests to refresh the entries in its K-
Buckets.

o Passive Hub Discovery: Upon receiving RPC requests
such as FIND HUB or FIND WORKER from other
Hubs, the recipient updates its corresponding K-Bucket
with the sender’s information.

o Liveness Check and Failure Detection: Periodic PING
messages are sent to peers in K-Buckets to determine
their availability. Non-responsive nodes are subsequently
purged from the table.

Upon receiving an RPC message from another Hub y, Hub x
executes the following update procedure:

o Distance Calculation: Compute the logical distance
d(x,y) = x ® y,, where x and y are the 160-bit Node
IDs.

o Bucket Selection: Identify the corresponding K-Bucket
based on the value of d(x,y).

o Update Logic

— If y’s IP is already recorded in the selected K-Bucket,
move its entry to the tail of the bucket (indicating
recent activity).

— If y’s IP is not recorded and the bucket contains
fewer than k entries, append (IP, Port, Node ID) of
y to the tail.

— If the bucket is full:

* Select the oldest entry z at the head of the bucket
and issue a PING.

x If z fails to respond, remove z and append y’s
entry to the tail.

* If z responds, retain z by moving it to the tail and
discard y.

This update mechanism implements an efficient least recently
seen replacement policy, allowing active, long-lived nodes
to persist in the routing table, thereby enhancing network
stability and reducing maintenance overhead. By prioritizing
persistent nodes, the likelihood that entries remain online in
subsequent intervals increases, thereby reducing churn-related
inefficiencies.

Additionally, this mechanism contributes to resilience
against denial-of-service (DoS) attacks, since new entries can
only replace existing ones if the latter are verified to be offline,
thereby mitigating routing table flooding via malicious node
injection.

To prevent K-Bucket staleness, the system periodically
selects a random Hub from each K-Bucket to perform a PING
check if no updates have occurred within a predefined timeout
window. This ensures responsiveness without incurring signif-
icant overhead.

E. Node Admission and Recursive Discovery Mechanisms

Maintaining robust network connectivity and efficient task
assignment in ZEROBASE relies heavily on dynamic node
onboarding and recursive node localization algorithms. This
section details the procedures for Worker registration, Hub
node admission and departure, and recursive lookup protocols
for both node types.

1) Worker Node Admission Protocol: Worker nodes are the
computational backbone of the execution layer, responsible
for off-chain computation and proof generation. When a new
Worker node attempts to join the network, the following
admission process is initiated:

o Proximity Discovery: A Hub calculates the logical XOR
distance between the Worker’s Node ID and all known
Hubs, identifying the K closest Hubs.

o Registration Broadcast: The initiating Hub sends
ADD_WORKER commands to these K Hubs, informing
them of the new Worker’s existence.

o State Recording: Each recipient Hub updates its local
state table, adding the Worker to its distributed index.

o Periodic Re-advertisement: Each of the K Hubs period-
ically (e.g., hourly) re-broadcasts Worker information to
ensure discoverability.

o Expiration Policy: Worker records automatically expire
24 hours after publication to prevent outdated or invalid
references.

This protocol enables fault-tolerant, decentralized indexing of
Worker nodes while ensuring discoverability and consistency
across the network.

2) Hub Node Admission and Departure Protocol: To join
the network, a new Hub node x must connect to at least one
existing bootstrap node y. The admission proceeds as follows:

o Bootstrap Contact: Node x initiates a connection to

bootstrap node y and adds y to its initial K-Bucket.

o Initial Lookup: Hub x sends a FIND_HUB request to vy,

using x’s own Node ID as the target.

o Neighbor Discovery: Node y replies with the K Hubs

closest to x, which x then adds to its own routing table.

« Iterative Expansion: Hub x recursively issues FIND_HUB

requests to the newly discovered Hubs until its routing
table reaches sufficient coverage.
This process guarantees rapid integration of new nodes into
the network’s logical topology.

Hub departures are handled implicitly through passive ex-
piration. Neighboring Hubs detect failed nodes via periodic
PINGs and automatically remove them from their K-Buckets.
This self-healing property aligns with the “Sleepy Model” of
asynchronous consensus [21], allowing nodes to temporarily
go offline without compromising the system’s security or
liveness guarantees.

3) Recursive Hub Lookup Algorithm: To locate a Hub with
target Node ID y, Hub x initiates a recursive lookup as follows:

o Distance Computation: Calculate the logical distance

dz,y) =z dy.

o Bucket Selection: Determine the appropriate K-Bucket by

computing |logd| and select up to « candidate Hubs.

o Initial Query: Send FIND _HUB to these « candidates.

« Recursive Expansion:

— If any queried node has ID vy, it responds with its
own metadata.

— Otherwise, each queried Hub measures its own dis-
tance to y and returns « closer candidates from its
routing table.

— Hub x repeats this process until it collects K Hubs
closest to y, or until no closer candidates can be
found.

This recursive approach ensures convergence even if the exact
target does not exist in the network, and provides robust
pathfinding through the XOR metric. The parameter oo = 3 is
chosen to balance search parallelism with messaging overhead.

FE. Recursive Worker Lookup Protocol

To discover a specific Worker node, a recursive lookup is

initiated, analogous to Hub resolution. For instance:

e Let Hub; have ID = 00000110, and it aims to locate a
Worker with Node ID = 00010000.

o The XOR distance is 00000110400010000 = 00010110,
i.e., decimal 22, which falls within the distance range of
K-Bucket 5 (i.e., [24,25)[2,25)[24, 25)).

¢ Hub; examines its K-Bucket 5:

— If the Worker is managed by a known Hub (e.g.,
Hubs), Hub; directly queries Hubs.
— If not, Hub; selects a candidate Hubs from the
bucket and instructs it to continue the search.
— If Hubs lacks the desired Worker, it returns a closer
Huby, and the search continues recursively.
This recursive convergence ensures resilient and efficient
Worker localization, even under frequent topology changes or
partial routing failures.

G. Threat Models and Security Analysis in Distributed Net-
works

In the context of the open-access and highly decentralized
architecture of the ZEROBASE network, the system is in-
herently exposed to a wide range of adversarial threats. The
permissionless nature of node participation and the dynamic
evolution of routing state significantly heighten the attack
surface. This section identifies and analyzes four critical attack
vectors that pose substantial risks to network stability and
integrity: Sybil Attacks, Eclipse Attacks, Churn Attacks, and
Adversarial Routing Attacks.

1) Sybil Attacks: A Sybil attack refers to a scenario in
which a malicious Hub node illegitimately assumes multiple
identities within the network, with each instance referred to
as a Sybil Hub [22], [23]. The attacker leverages these false
identities to gain disproportionate influence over the network.
The implications of such an attack include:

o Injection of Fake Hubs: In a permissionless network, at-
tackers may issue repeated join requests to elicit neighbor
lists from responding nodes. This enables the attacker
to map out large portions of the network topology,
facilitating further targeted disruption.

e Routing Table Manipulation: Routing in ZEROBASE
relies on timely inter-Hub announcements to maintain
accurate routing tables. By impersonating multiple Hubs,
a Sybil attacker can infiltrate the routing tables of honest
nodes and mislead their routing decisions. In extreme
cases, this behavior may escalate into an Eclipse attack.

o Fake Resource Publication: Malicious nodes may regis-
ter fabricated Worker nodes and advertise them to the
network. Upon receiving computational tasks, these fake
Workers drop requests silently. A proliferation of such
bogus Workers degrades the system’s proof-generation
efficiency and reduces overall throughput.

2) Eclipse Attacks: An Eclipse attack occurs when an
attacker successfully populates a victim Hub’s K-Buckets
with malicious nodes, thereby isolating the victim from the
legitimate network [24], [25]. To execute such an attack, the
adversary must first establish a sufficient number of Sybil Hubs
and then strategically position them into the routing table of
the target Hub. The impact of Eclipse attacks includes:

o Data Inaccessibility: The victim is unable to communicate
with legitimate nodes, leading to failed or delayed data
queries.

o Routing Degradation: Polluted routing tables may cause
recursive loops or redirections to invalid nodes, severely
impairing query efficiency.

o Network Partitioning: When multiple Hubs are simulta-
neously compromised, the network may fragment into
isolated subnetworks, undermining both decentralization
and fault tolerance.

3) Churn Attacks: Churn attacks exploit the natural toler-
ance of distributed networks to dynamic node participation.
In such attacks, adversaries intentionally induce high rates of
node join and leave events to disrupt the system’s operational
stability. Though distributed systems are generally resilient to

organic churn, artificially elevated churn levels can lead to the
following consequences:

o Degraded Network Performance: Constant reconfigura-
tion of routing tables and rebalancing of data increase
latency and reduce query success rates.

+ Reduced Worker Availability: Frequent node churn causes
Workers to disappear or become unreachable, interrupting
proof generation and task execution.

o Diminished Hub Reliability: Legitimate Hubs may appear
unstable due to frequent route inconsistencies or update
failures, diminishing their trust scores and participation.

4) Adversarial Routing Attacks: Adversarial routing at-
tacks involve the deliberate manipulation of routing paths by
a malicious entity to intercept, misdirect, or suppress network
traffic. These attacks target the integrity and availability of
routing operations, and their effects include:

o Routing Table Corruption: By injecting falsified routing
information or exploiting vulnerabilities in route prop-
agation, adversaries can steer the routing behavior of
legitimate nodes.

o Path Hijacking and Traffic Control: The attacker may
redirect traffic through compromised nodes, enabling
eavesdropping, tampering, or traffic analysis.

o Response Forgery and Data Poisoning: During routing or
query resolution, attackers may forge or alter response
messages, leading to failed queries or data inconsisten-
cies.

o Communication Disruption: By obstructing connectivity
between selected nodes and the broader network, ad-
versaries can induce partial network outages or create
partitioned subgraphs.

IV. PRIVACY-PRESERVING COMPUTATION

The ZEROBASE architecture realizes a native privacy-
preserving execution environment through tightly coordinated
layers of TEE + ZKP + Proof Mesh, enabling sensitive off-
chain data to be processed under trusted conditions while
publishing verifiable results in zero-knowledge. This ensures
confidentiality, verifiability, and immutability throughout the
computation lifecycle. This privacy-computation framework
not only enforces data security but also encapsulates a reusable
set of mechanisms and algorithmic constructs.

A. Data Confidentiality Mechanisms: End-to-End Encryption
& Enclosed Execution

ZEROBASE’s privacy framework safeguards data across
its full lifecycle, maintaining encryption especially during
untrusted off-chain processing:

e On-chain Input Encryption. Prior to on-chain submission
or dispatch to a Worker, all user data is encrypted,
denoted as Enc(data), via symmetric encryption combined
with session key wrapping, ensuring that only the target
Worker’s TEE can decrypt and process it. This protocol
preserves confidentiality during transit, thwarting man-in-
the-middle exposures.

o TEE Enclosed Execution Model. Within the Worker
node’s local Trusted Execution Environment, the en-
crypted data is decrypted and processed in isolation [26]
. The execution pipeline comprises:

— Decryption of input data strictly within the TEE
boundary;

— Execution of the private model or strategy logic in a
sealed environment;

— Output generation, re-encrypting results before ex-
posing them;

— Zero-Knowledge Proof (ZKP) generation, enabling
verifiable correctness without revealing inputs or
internal states.

o Intermediate states are purged, and no residual traces are
left, ensuring both data confidentiality and resistance to
tampering.

o Cryptographic Hardware Protections. ZEROBASE lever-
ages hardware-backed isolation technologies such as
AMD SEV, Intel TDX, and ARM CCA to enforce en-
cryption of memory and logical I/O barriers [13-15],
ensuring data confidentiality even during computation.
Future extensibility includes optional Fully Homomor-
phic Encryption (FHE) to support end-to-end private
computation without exposing plaintext at any stage [27].

This architecture’s use of encryption, secure execution en-
claves, and hardware isolation reflects an evolution from
predecessors that decoupled verification and privacy within
blockchain systems [28], [29], promoting a decentralized,
minimally-trusted privacy infrastructure.

B. Verifiability Mechanisms: ZKP Generation from Execution
Context

To support on-chain verification of privately computed
results, ZEROBASE introduces a formal modeling framework
that translates off-chain computation into zero-knowledge con-
straints:

o Context-Aware Circuit Templates. ZEROBASE supplies
a library of standardized ZKP circuit templates tailored
to various private computation tasks:

— Range Checks (range _check): Assert numerical val-
ues fall within prescribed intervals.

— Model Inference Proofs (model inference): Verify
the correctness of model output given an input.

— Data Transformation Checks (data_transformation):
Confirm validity of state transitions.

« Each template maps a specific task type to an appropriate
circuit construction.

o Constraint System Assembly:Upon completion of TEE
execution, essential elements—input, state, intermediate
variables, and output—are extracted to construct an R1CS
or AIR constraint system. Efficient proof systems (e.g.,
Groth16, PLONK) are then instantiated to generate zk-
SNARK or zk-STARK proofs. The public inputs covering
the state and context enable on-chain smart contract
verification of correctness without exposing sensitive
information.

¢ Algorithmic Optimizations:

— Witness Compression: Reduces proof size by pruning
redundant witness components.

— Recursive Proofs: Enable merging or nesting of mul-
tiple proof stages to streamline on-chain verification.

— Circuit Parameterization: Tailors templates to spe-
cific application requirements, aiding rapid deploy-
ment and efficiency.

C. Composability Mechanisms: Encapsulation within the
Proof Mesh

The Proof Mesh layer acts not only as a transport inter-
mediary but also as an orchestrator of composable privacy
operations, as detailed below:

e Modular Task Abstraction: Each privacy computation is
encapsulated as a self-contained module: Task := (Inpu-
tEnc, StrategyHash, ZKP_Circuit_ID, OutputDigest, Proof
)

— InputEnc: Encrypted input payload [30]

— StrategyHash: Digest of the execution logic

— ZKP _Circuit_ID: Identifier for the applicable circuit
template

— OutputDigest: Hash summarizing the result

— Proof m: ZK proof certifying correct execution

o Inter-Module Proof Reuse:

— Cross-module chaining: Outputs of one task can
serve as inputs for another, supporting sequences of
private computations.

— Off-chain closed-loop flows: Users can trigger pri-
vate model inferences, followed by further private
computation or contract interactions.

— Cross-DApp privacy interoperability: Different ap-
plications can share validated proofs, fostering a
decentralized privacy-computation network.

o Versioning & Context Packaging. Each task carries ex-
ecution metadata—e.g., user ID hash, timestamp, and
strategy hash—and forms part of a proof chain with
traceability. Subscribers can monitor proof publication
events or task status, supporting transparent, composable
orchestration. This embraces recent advances in privacy-
aware domain-specific languages that embed safety guar-
antees at the abstraction layer [31].

D. Security Foundations & Attack-Resistance Strategies

ZEROBASE embeds multi-layered security constructs
across its execution, proof, and mediation layers, establishing
defense-in-depth against adversarial threats, passive snooping,
and tampering.

1) TEE Layer Protections:

o Remote Attestation. Prior to execution, each Worker
exchanges hardware-signed attestations with the network,
ensuring only genuine TEEs participate [23], [32].

e Encrypted Storage & Isolated I/O. Data remains en-
crypted within TEE storage, with all in/out channels logi-
cally isolated to resist side-channel and memory snooping

attacks. Hardware-enforced safeguards (e.g., AMD SEV,
Intel TDX) underpin this confidentiality.

o Strategy-Fingerprint Binding. Each execution task ref-
erences a StrategyHash bound to the proof context to
validate that only vetted computation logic was executed,
preventing code tampering or malicious substitution.

2) ZKP Layer Protections:

o Data Confidentiality by Construction. The proof systems
completely conceal input data while validating correct-
ness. Optional differential privacy mechanisms can be
employed to resist statistical inference from proof leaks
[33].

o Anti-Replay Protections. Proof bundles include unique
task identifiers and timestamps to prevent replay or con-
text substitution attacks.

e Circuit Auditing & Registry. All ZKP circuit templates
are subject to mandatory security audits and registration
to ensure correctness, absence of backdoors, and logical
consistency.

3) Proof Mesh Layer Protections:

e Multi-Signature Validation. Every proof package in-
cludes cryptographic signatures and metadata annota-
tions—indicating task provenance, execution lineage, and
node identity—to enable verifiers to authenticate proof
integrity.

¢ Linked Proof Chain for Traceability. Proofs are chained
by including previous output hashes as public inputs to
subsequent tasks. This constructs an auditable directed
acyclic structure that resists partial tampering or disloca-
tion attacks.

o Zero-Trace Mode. For high-security tasks, metadata can
be encrypted or suppressed so that proof publication
leaves no observable traces, mitigating metadata analysis
and profiling.

Through these layered security mechanisms—spanning
hardware-based trust, cryptographic soundness, and
orchestrated mediation—ZEROBASE delivers a robust

privacy-computation framework. It is intrinsically resistant
to manipulation, eavesdropping, and structural vulnerability,
empowering trustworthy execution in applications ranging
from DeFi to privacy-preserving Al inference.

V. USER ENGAGEMENT PATHWAYS AND APPLICATION
ARCHITECTURE

The ZEROBASE network is designed to accommodate mul-
tiple role types, each interacting with the trust-minimized ex-
ecution framework via explicit input/output interfaces. These
roles are integrated within the system’s Trusted Execution,
Proof Generation, and Liquidity modules, forming a modular,
reusable, and composable participation paradigm.

A. Participation Pathways

Resource Contribution Pathway. Individuals possessing idle
resources—such as bandwidth, compute power, or legacy
GPUs—can contribute to the network via resource aggrega-
tors using a ZEROBASE client or embedded SDK. Tasks

are scheduled across multiple platforms and executed within
SEV-SNP protected TEEs. Upon completion, a verifiable
Resource Usage Proof is generated and translated into a
structured on-chain credential using zero-knowledge circuits.
This credential can be staked, lent, or otherwise deployed
within financial strategies, forming a nexus between “off-chain
resource — verifiable state — composable asset.”

Strategy Execution Pathway. Asset managers or quant teams
with proprietary trading models can encapsulate their logic
in TEE-compatible execution images. After remote attestation
registers their environment, the strategy runs off-chain against
live market data, consistently outputting zero-knowledge in-
terval proofs denoting risk metrics and return distributions.
On-chain verifiers assess this evidence’s integrity and interact
via a zkStaking module. This pathway achieves the design goal
of “invisible strategy, yet transparent risk.”

Protocol Integration Pathway. External DeFi or Web3 pro-
tocols can incorporate ZEROBASE via standardized inter-
faces—e.g., zkRouter or zkReport. Integrators can query
proof-of-state from strategy pools or resource tokens to cal-
ibrate liquidation thresholds, determine collateral ratios, or
orchestrate cross-protocol logic. These interactions do not
require off-chain coordination or trusted intermediaries; the
entire exchange is driven by structured zero-knowledge proofs
and on-chain function hooks, delivering high reusability and
low trust assumptions.

B. Illustrative Use Cases

o Strategy Execution Example. A hedge fund packages a
delta-neutral trading algorithm as a SEV VM executable.
Periodically, the system issues proofs of leverage bounds
and drawdown risk on zkStaking, visible to users without
disclosing strategy details. Investors can choose partic-
ipation based on zero-knowledge attestations, enabling
confidential tokenized fundraising.

o Resource Utilization Example. An individual connects
spare compute capacity to a ZEROBASE aggregator
for parallel task execution. The system computes in
TEE, emits zero-knowledge earnings proofs, and mints
on-chain resource tokens. These tokens can be staked,
transferred, or nested into other protocols, effectively
financializing hitherto idle resources.

e Cross-Protocol Composition Example. A DeFi lending
platform employs zkRouter to query a user’s solvency
position within a strategy pool. On-chain verification
of proof updates loan-to-value ratios without trusting
off-chain oracles or inter-protocol messaging.

o Infrastructure Integration Example. A Web2 data provider
serializes its external API (e.g., credit ratings or voting
results) into a SEV-enclosed execution node. Upon execu-
tion and zero-knowledge attestation, a credible on-chain
data summary is generated for smart contracts—bridging
Web2 outputs into Web3 trust environments.

By standardizing interface contracts, proof formats, and par-
ticipant abstractions, ZEROBASE establishes a composable
execution medium that supports multiple engagement modali-
ties. Participants can fluidly shift roles—for instance, resource

providers evolving into strategy node operators, or integrators
specifying new proof-based state requirements. The result is
an emergent participant topology that is evolutionary and
self-organizing.

VI. CONCLUSION

In a landscape where transparency and privacy conflict,
where off-chain execution struggles to align with on-chain
verification, and where latent resources remain untapped,
ZEROBASE offers a structural remedy: embedding trust into
the architecture and restoring validation authority to users and
protocols.

Leveraging trusted execution, zero-knowledge proofs, and
composable liquidity structures, ZEROBASE delivers a sys-
tem that requires no human interpretation. Strategies remain
undisclosed but risks can be audited; resources need neither
custodial intermediaries nor opaque contracts; capital need
not rely on platform guarantees, but can be orchestrated via
structural rules. This is the essence of structural transparency
and trust-minimized collaboration.

ZEROBASE is not designed to supplant existing systems or
to predefine a fixed end-product class. Instead, it is built as a
foundational substrate—a trust-anchored core for developers
to reuse, ecosystems to synergize, and execution agents to
run.We invite strategy providers to use it to build unique yet
verifiable financial products; resource owners to expose real-
world compute capacity on-chain; and developers to treat it as
a compositional engine, embedding new modules, expanding
new use cases, and inventing new structures. We have unveiled
the initial version of this architecture—and it will, in time,
belong to everyone.

REFERENCES

[1] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Scalable zero
knowledge via cycles of elliptic curves,” Algorithmica, vol. 79, no. 4,
pp. 1102-1160, 2017.

[2] I Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin: Anonymous
distributed e-cash from bitcoin,” in 2013 IEEE symposium on security
and privacy. 1EEE, 2013, pp. 397-411.

[3] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth, “Succinct
non-interactive arguments via linear interactive proofs,” Journal of
Cryptology, vol. 35, no. 3, p. 15, 2022.

[4] A. Bogdanov, M. KneZevi¢, G. Leander, D. Toz, K. Varici, and 1. Ver-
bauwhede, “Spongent: A lightweight hash function,” in International
workshop on cryptographic hardware and embedded systems. Springer,
2011, pp. 312-325.

[5] Intel Corporation, “Intel® Trust Domain Extensions (TDX),” https://
www.intel.com, 2025, [Online].

[6] AMD, “AMD SEV-SNP: Secure Encrypted Virtualization — Secure
Nested Paging,” https://www.amd.com, 2025, [Online].

[71 Arm Ltd., “Arm Confidential Compute Architecture (CCA),” https://
www.arm.com, 2025, [Online].

[8] J. Groth, “On the size of pairing-based non-interactive arguments,’
in Annual international conference on the theory and applications of
cryptographic techniques. Springer, 2016, pp. 305-326.

[9] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “Plonk: Permutations

over lagrange-bases for oecumenical noninteractive arguments of knowl-

edge,” Cryptology ePrint Archive, 2019.

E. Ben-Sasson, 1. Bentov, Y. Horesh, and M. Riabzev, “Scalable, trans-

parent, and post-quantum secure computational integrity,” Cryptology

ePrint Archive, 2018.

M. Fischlin, “Communication-efficient non-interactive proofs of knowl-

edge with online extractors,” in Annual International Cryptology Con-

ference. Springer, 2005, pp. 152-168.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

B. Biinz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short proofs for confidential transactions and more,” in
2018 IEEE symposium on security and privacy (SP). 1EEE, 2018, pp.
315-334.

0. Goldreich, Foundations of cryptography: volume 2, basic applica-
tions. Cambridge university press, 2001, vol. 2.

V. Lyubashevsky, N. K. Nguyen, and M. Plancon, “Lattice-based zero-
knowledge proofs and applications: shorter, simpler, and more general,”
in Annual International Cryptology Conference. Springer, 2022, pp.
71-101.

S. Gorbunov, V. Vaikuntanathan, and H. Wee, “Attribute-based encryp-
tion for circuits,” Journal of the ACM (JACM), vol. 62, no. 6, pp. 1-33,
2015.

A. Kothapalli, S. Setty, and I. Tzialla, “Nova: Recursive zero-knowledge
arguments from folding schemes,” in Annual International Cryptology
Conference. Springer, 2022, pp. 359-388.

F. Castillo, J. Heiss, S. Werner, and S. Tai, “Trusted compute units:
A framework for chained verifiable computations,” arXiv preprint
arXiv:2504.15717, 2025.

F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town crier: An
authenticated data feed for smart contracts,” in Proceedings of the 2016
aCM sIGSAC conference on computer and communications security,
2016, pp. 270-282.

M. K. Reiter and A. D. Rubin, “Crowds: anonymity for web transac-
tions,” ACM Transactions on Information and System Security, vol. 1,
no. 1, pp. 66-92, 1998.

P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-
tion system based on the xor metric,” in International workshop on
peer-to-peer systems. Springer, 2002, pp. 53-65.

R. Pass and E. Shi, “The sleepy model of consensus,” in International
conference on the theory and application of cryptology and information
security. Springer, 2017, pp. 380-409.

J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten, “Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies,” in 2015 IEEE symposium on security and privacy.
IEEE, 2015, pp. 104-121.

M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OsDI, vol. 99, no. 1999, 1999, pp. 173-186.

A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder,
Bitcoin and cryptocurrency technologies: a comprehensive introduction.
Princeton University Press, 2016.

T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds,” in Proceedings of the 16th ACM conference on Computer and
communications security, 2009, pp. 199-212.

B. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gorbunov, “Iron:
functional encryption using intel sgx,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, 2017,
pp. 765-782.

C. Gentry, A fully homomorphic encryption scheme. Stanford university,
20009.

G. Zyskind, O. Nathan et al., “Decentralizing privacy: Using blockchain
to protect personal data,” in 2015 IEEFE security and privacy workshops.
IEEE, 2015, pp. 180-184.

C. Lin, D. He, X. Huang, M. K. Khan, and K.-K. R. Choo, “Dcap: A
secure and efficient decentralized conditional anonymous payment sys-
tem based on blockchain,” IEEE Transactions on Information Forensics
and Security, vol. 15, pp. 2440-2452, 2020.

N. Déttling, S. Garg, M. Hajiabadi, D. Masny, and D. Wichs, “Two-
round oblivious transfer from cdh or lpn,” in Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques.
Springer, 2020, pp. 768-797.

E. Lobo-Vesga, A. Russo, and M. Gaboardi, “A programming language
for data privacy with accuracy estimations,” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 43, no. 2, pp.
1-42, 2021.

O. Goldreich, “Secure multi-party computation,” Manuscript. Prelimi-
nary version, vol. 78, no. 110, pp. 1-108, 1998.

C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy,” Foundations and trends® in theoretical computer science,
vol. 9, no. 3—4, pp. 211407, 2014.

